#### **Unit 1: Relationships Between Quantities**

- Converting between units
  - o 5280 feet/mile

Example 1: Convert 5 miles to feet

Example 2: A rectangle has a length of 2 meters and a width of 40 centimeters. What is the perimeter of the rectangle?

Example 3: Convert 60 miles per hour to feet per minute

· Appropriate units of measure

Example 4: d = m/v

If mass is measure in kilograms and volume is measured in cubic meters, what is the unit rate for density?

Example 5: The number of calories a person burns doing an activity can be approximated using the formula C = kmt, where m is the person's weight in pounds and t is the duration of the activity in minutes. Find the units for the coefficient k.

- Quantities can be counts or measures. These can be exact or approximate.
- Term, Coefficient, Constant, Factors

Example 6:  $4x^2 + 7xy - 3$ 

Example 7: 4x(x + 2) (5x-8)

Interpreting formulas

Example 8: To interpret a formula, it is important to know what each variable represents and to understand the relationships between the variables. For example, look at the compound interest formula  $A = P(1 + r)^t$ 

Example 9: The number of calories burned during exercise depends on the activity. The formulas for two activities are given. C1 = 0.012mt and C2 = 0.032mt

- Writing and Solving Equations
  - o Inequalities look for words such as at least, greater/less than, no more than, etc.

Example 10: The Jones family has twice as many tomato plants as pepper plants. If there are 21 plants in their garden how many plants are pepper plants?

Example 11: Find two consecutive integers whose sum is 225.

Example 12: A rectangle is 7 cm longer that it is wide. Its perimeter is at least 58 cm. What are the smallest possible dimensions for the rectangle?

Example 13: The city of Arachna has a spider population that has been doubling every year. If there are about 100,000 spiders this year, how many will there be 4 years from now?

**Example 14: Constraints** 

Mark has \$14 to buy lunch for himself and his sister. He wants to buy at least one sandwich and one drink. If sandwiches cost \$5 and drinks cost \$2, what combinations of numbers of sandwiches and drinks could Mark buy?



# Unit 2: Reasoning with Equations and Inequalities

- Properties be able to justify the steps of solving an equation using the properties
  - o Substitution
  - o Addition Property of Equality
  - o Subtraction Property of Equality
  - o Multiplication Property of Equality
  - o Division Property of Equality

**Example 1:** Solve and justify each step

16 = 3(x + 8)

- o Reflexive Property
- Transitive Property
- Symmetric Property
- Distributive Property

- Solving Equations and Inequalities
  - O What are equivalent expressions?

**Example 2:** Is the expression  $\frac{6x+8}{2}$  equivalent to 3x + 4?

o Tip: Eliminate denominators in fractions

Example 3:  $\frac{m}{4} + \frac{m}{6} = 1$ 

- o Tip: Remember special rule when multiplying or dividing with negative numbers in inequalities
- Writing Equations from Word Problems

Example 4: A ferry boat carries passengers back and forth between two communities on the Peachville River.

- It takes 30 minutes longer for the ferry to make the trip upstream than downstream.
- The ferry's average speed in still water is 15 miles per hour.
- The river's current is usually 5 miles per hour.

This equation can be used to determine how many miles apart the two communities are.

$$\frac{m}{15-5} = \frac{m}{15+5} + 0.5$$

What is m, the distance between the two communities?

**Example 5:** Joachim wants to know if he can afford to add texting to his cell phone plan. He currently spends \$21.49 per month for his cell phone plan, and the most he can spend for his cell phone is \$30 per month. He could get unlimited texts added to his plan for an additional \$10 each month. Or, he could get a "pay-as-you-go" plan that charges a flat rate of \$0.15 per text message. He assumes that he will send an average of 5 text messages per day. Can Joachim afford to add a text message plan to his cell phone?

- Solving Systems of Equations
  - Solutions to systems are ordered pairs
  - o Systems can have 0, 1 or infinite solutions
  - o Three Methods for Solving: Substitution, Elimination, Graphing
  - o Tip: Use calculators to create tables?

**Example 8:** Solve 
$$\begin{cases} y = 2x - 4 \\ x = y + 1 \end{cases}$$

Example 9: Solve 
$$\begin{cases} 2x - y = 1 \\ 5 - 3x = 2y \end{cases}$$

Example 10: Solve 
$$\begin{cases} x - 3y = 6 \\ -x + 3y = -6 \end{cases}$$

Example 11: Solve 
$$\begin{cases} -3x - y = 10 \\ 3x + y = -8 \end{cases}$$



Example 12: Is (3, -1) a solution to this system? 
$$\begin{cases} y = 2 - x \\ 3 - 2y = 2x \end{cases}$$

**Example 13:** Rebecca has five coins worth 65 cents in her pocket. If she only has quarters and nickels, how many quarters does she have? Use a system of equations to arrive at your answer and show all steps.

**Example 14:** Peg and Larry purchased "no contract" cell phones. Peg's phone cost \$25 plus \$0.25 per minute. Larry's phone cost \$35 plus \$0.20 per minute. After how many minutes of use will Peg's phone cost more than Larry's phone?

- Graphing Equations and Inequalities
  - o When do you use a number line?

Example 15: 3x + 8 < 14

o When do you use a coordinate plane?

Example 16: 3x + y > -1

- o Remember the differences in graphing: <, >,  $\le$ ,  $\ge$
- Graphing Systems of Inequalities

# **Unit 3: Linear and Exponential Functions**

**Linear Equations** 

y=mx+b

Exponential Equations  $y = a(b)^x$ 

**Domain and Range** 

or  $y = a(1 \pm \%)^x$ 

Functions and function notation f(x)



 $\{(1, 1), (2, 3), (3, 5)\}$ 

| L | x | 3" |
|---|---|----|
|   | l | 1  |
|   | 1 | 2  |
| Γ | 1 | 3  |
|   | 1 | 4  |
|   | 7 | 1  |
|   | 2 | 4  |
|   | 3 | 1  |

**Example 1:** Given f(x) = 2x - 1, find f(7).

The equation describes the function rule. f is the function. x is the input. f(x) is the output.

Restrictions on domain and range?

Example 2: A manufacturer keeps track of her monthly costs by using a "cost function" that assigns a total cost for a given number of manufactured items, x. The function is C(x) = 5,000 + 1.3x.

- a. What is the domain of the function?
- b. What is the cost of 2,000 items?
- c. If costs must be kept below \$10,000 this month, what is the greatest number of items she can manufacture?
- Sequence Vocabulary: Sequence, Term, Finite, Infinite, Explicit (closed) form, Recursive form
- Arithmetic Sequences (linear)
  - o Recursive form:  $a_n = a_{n-1} + d$   $a_1 =$ \_\_\_\_
  - o Explicit form:  $a_n = dn + d_0$

**Example 3:** Consider the sequence: 3, 6, 9, 12, 15, . . .

Geometric Sequences (exponential)

o Recursive form:  $a_n = r \cdot a_{n-1} \cdot a_1 =$ \_\_\_\_

o Explicit form:  $a_n = a_1(r)^{n-1}$ 

**Example 4:** Consider the sequence: 16, 8, 4, 2, 1,  $\frac{1}{2}$ ,  $\frac{1}{4}$ ,  $\frac{1}{8}$ 

- Properties of functions from graphs and tables
  - o Domain
  - o Range
  - o Intercepts
  - o Increasing/decreasing
  - o Positive/negative
  - o Maximum/minimum
  - o Rate of change
  - o Even or odd

#### Example 5:

Linear Function 
$$f(x) = x$$



#### Example 6:

The amount accumulated in a bank account over a time period t and based on an initial deposit of \$200 is found using the formula  $A(t) = 200(1.025)^t$ ,  $t \ge 0$ . Time, t, is represente on the horizontal axis. The accumulated amount, A(t), is represented on the vertical axis.



- a. What are the intercepts of the function?
- b. What is the domain of the function?
- c. Why are all the t values non-negative?
- d. What is the range of the function?
- e. Does the function have a maximum or minimum value?

**Example 7:** A population of squirrels doubles every year. Initially there were 5 squirrels. A biologist studying the squirrels created a function to model their population growth, P(t) = 5(2t) where t is time. The graph of the function is shown. What is the range of the function?



- Translations of linear and exponential functions (Parent functions: y = x and y = 2x)
  - o Horizontal shift

Linear 
$$y = x + 2$$

$$y = 2^{x} + 3$$

$$y = x - 2$$

$$y = 2^{x} - 3$$

o Reflection

Linear 
$$y = -x$$

$$y = -2^{x}$$

o Stretch (steeper) or shrink (less steep)

Linear 
$$y = 2x$$

$$y = 2(2)^x$$

$$y = \frac{1}{2}x$$

$$y = \frac{1}{2}(2)^x$$

- Parameters slope (the coefficient) and y-intercept (the constant)
  - o y = mx + b
  - o Affect the shape and position of the function

## **Unit 4: Describing Data**

### Summarize, Represent, and Interpret Data - Single Variable/Coumt

- Measures of central tendency
  - o Mean
  - o Median
- Measures of spread
  - o Interquartile range
  - o Mean absolute deviation (MAD)
- Quartiles
  - o First quartile/lower quartile/Q1
  - o Third quartile/upper quartile/Q<sub>3</sub>
  - o (BTW: the median is the Q<sub>2</sub>)
- Representing Data
  - o Histogram
  - o Box plot
  - o Dot plots

Ray's Math Test Scores



- o Frequency distribution
- o Normal distribution vs. Skewness
- o Bimodal and Multimodal

PRACTICE: 70, 78, 82, 83, 84, 85, 90













#### Outliers

**Student P:** {8, 9, 9, 9, 10} **Student Q:** {3, 9, 9, 9, 10}

# Summarize, Represent, and Interpret Data - Two Variable/Category

- Two main types of data categorical and quantitative
- Bivariate data
  - o Can be represented as an ordered pair
  - o Scatter plots
- Two-way frequency chart (Categorical Data)
  - o Joint frequency
  - o Marginal frequency
  - o Conditional frequency
- Scatter plot (Quantitative Data)
  - Line of best fit
  - o Regression
  - o Residuals
  - Correlation coefficient

| Class 1 Test Score Analysis |           |  |
|-----------------------------|-----------|--|
| Mean Study                  | Mean Test |  |
| Time (hours)                | Score     |  |
| 0.5                         | 63        |  |
| 1                           | 67        |  |
| 1.5                         | 72        |  |
| 2                           | 76        |  |
| 2.5                         | 80        |  |
| 3                           | 85        |  |
| 3.5                         | 89        |  |

# Participation in School Activities School Club Gender Male Female Totals Band 12 21 33

| Male | Female                    | Totals                                                                |
|------|---------------------------|-----------------------------------------------------------------------|
| 12   | 21                        | 33                                                                    |
| 15   | 17                        | 32                                                                    |
| 16   | 3                         | 19                                                                    |
| 7    | 9 _                       | 16                                                                    |
| 28   | 7                         | 35                                                                    |
| 78   | 57                        | 135                                                                   |
|      | 12<br>15<br>16<br>7<br>28 | 12     21       15     17       16     3       7     9       28     7 |

Football Players Heights and Weights







Positive Perfect





# **Review for Test 9: Quadratic Functions**

- 1. Which of the following statements about quadratic functions are true?
  - I. The graph can have one solution
  - II. The graph can have two solutions
  - III. The graph can have three solutions
- IV. The graph will always cross the x-axis
- A. I, II and III
- B. I, II, III and IV
- C. I, II and IV
- D. I and II

#### Use the graph below to answer questions #2-7



- 2. What is the axis of symmetry for the graph?
- A. y = -3
- B. y = -1
- C. x = -3
- D. x = -1
- 3. What is the vertex?
- A. (-1, -3)
- B. (1,0)
- C. (-3,0)
- D. (-3,1)
- 4. What is the domain for the graph?
- A.  $y \ge -3$
- B.  $-3 \le x \le 1$
- C.  $-\infty < x < \infty$
- D. {-3, 1}
- 5. What is the range of the function?
- A.  $y \ge -3$
- B.  $-3 \le y \le 1$
- C.  $-\infty < y < \infty$
- D. y = -3
- 6. Which of the following statements is true?
- A. minimum at x = -3
- B. minimum at y = -3
- C. maximum at y = 4
- D. maximum at y = -3
- 7. What is y-intercept?
- A. (-3, 0)
- B. (1,0)
- C.(-2,0)
- D.(0,-2)

8. What is the parent function for the following equation:

$$f(x) = (x-2)(x+1)$$

- A. y = x
- B.  $y = x^2$
- C.  $y = \sqrt{x}$
- D. y = |x|
- 9. What is/are the solution(s) to the quadratic function:



- B. (1,0) and (0,-2)
- C. (-2,0)
- D. None



- 10. What is the solution set for the quadratic function:  $x^2 + 8x + 12 = 0$
- A. {12}
- B. None
- C.  $\{-6, -2\}$
- D. {2,6}
- 11. What are the roots for the quadratic function given in the table to the right?

| Α. | -3 | and  | <b>—</b> 2 |
|----|----|------|------------|
| ~  | J  | altu | _          |

- B. -6 and 1
- C. -18
- D. None

| x          | f(x) |
|------------|------|
| -6         | 0    |
| <b>-</b> 5 | -18  |
| -4         | -30  |
| -3         | -36  |
| -2         | -36  |
| -1         | -30  |
| 0          | -18  |
| 1          | 0    |
| 2          | 24   |

12. The quadratic function g has an x-intercept at (4,0), a y-intercept at (0,6), and an axis of symmetry at x=-2.

What are the solutions of function g?

- A. (4,0) and(0,6)
- B. (0,6)
- C. (-8,0), (4,0), (0,6)
- D. (-8,0) and (4,0)



13. What is the vertex of the quadratic function:

$$f(x) = x^2 + 4x - 8$$

A. (0, -8)

- B. (-2, -12)
- C. (-1, -11)
- D. (-4, -8)

14. What are the zeros of the quadratic function:

$$y = 2x^2 - 6x + 9$$

A. 9

B. 1 and 2

C. None

- D. 5
- 15. Given a quadratic function has solutions at (4,0) and (6,0) which of the following is one of the linear factors of the function?
- A. (x + 4)

B. (x - 6)

C. (x-2)

- D. (x + 6)
- 16. Which of the following represents the range of the quadratic function  $f(x) = x^2 + 10x + 24$ ?
- A.  $\{y \mid y \ge -5\}$
- B.  $\{y \mid y \ge -4\}$
- C.  $\{y \mid y \ge -1\}$
- D.  $\{y \mid -\infty < y < \infty\}$
- 17. What are the solutions to the quadratic equation  $2x^2 + 10x = 12$ ?
- A. x = -6 and x = 1
- B. x = -6 and x = 12
- C. x = -1 and x = 6
- D. x = -3 and x = -2
- 18. What is the solution set to the quadratic equation (x-2)(x+3) = 0?
- A.  $\{-2, 3\}$

B.  $\{2, -3\}$ 

C.  $\{-2, -3\}$ 

- $D.\{2,3\}$
- 19. What is the equation for the axis of symmetry of the parabola in the function below?



B. 
$$x = 3$$

C. 
$$y = 3$$

D. 
$$x = 1$$



20. Which of the following has the correct factored form **AND** the correct solutions for the quadratic equation  $x^2 - 2x - 3 = 0$ ?

A. 
$$(x-1)(x+3) = 0$$
 AND  $x = -1$  and  $x = 3$ 

B. 
$$(x-1)(x+3) = 0$$
 AND  $x = 1$  and  $x = -3$ 

C. 
$$(x+1)(x-3) = 0$$
 AND  $x = -1$  and  $x = 3$ 

D. 
$$(x+1)(x-3) = 0$$
 AND  $x = 1$  and  $x = -3$ 

21. Which of the following quadratic functions would have the same solutions as the graph?

A. 
$$(x-1)(x+4) = 0$$

B. 
$$(x-1)(x-4)=0$$

C. 
$$(x+1)(x+4) = 0$$

D. 
$$(x+1)(x-4) = 0$$



22. Which of the following correctly matches the quadratic function graphed below?

A. 
$$f(x) = x^2 + 5x + 6$$

B. 
$$f(x) = -x^2 + x + 6$$

C. 
$$f(x) = x^2 + x - 6$$





23. Given that the solutions to a quadratic equation are -7 and 8, which of the following could represent the quadratic function?

A. 
$$x^2 + x - 56$$

B. 
$$x^2 - x - 56$$

C. 
$$x^2 + 15x + 56$$

D. 
$$x^2 - 15x - 56$$